CASIA OpenIR  > 智能感知与计算研究中心
Tracking blurred object with data-driven tracker
Jianwei Ding; Kaiqi Huang; Tieniu Tan
2012
会议名称IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance
会议录名称2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance
页码331–336
会议日期2012
会议地点China
摘要Motion blur is very common in the low quality of image sequences and videos captured by low speed of cameras. Object tracking without accounting for the motion blur would easily fail in these kinds of videos. We propose a new data-driven tracker in the particle filter framework to address this problem without deblurring the image sequences. The motion blur is detected by exploring the property of the blurred input image through Fourier analysis. The appearance model is integrated with a set of motion blur kernels which could reflect different blur effects in real scenes. The motion model is improved to be more robust to sudden motion of the target object. To evaluate the proposed algorithm, several challenging videos with significant motion blur are used in the experiments. The experimental results demonstrate the robustness and accuracy of our algorithm.
关键词Target Tracking   image Sequences   algorithm Design And Analysis
语种英语
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/12688
专题智能感知与计算研究中心
通讯作者Kaiqi Huang
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Jianwei Ding,Kaiqi Huang,Tieniu Tan. Tracking blurred object with data-driven tracker[C],2012:331–336.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jianwei Ding]的文章
[Kaiqi Huang]的文章
[Tieniu Tan]的文章
百度学术
百度学术中相似的文章
[Jianwei Ding]的文章
[Kaiqi Huang]的文章
[Tieniu Tan]的文章
必应学术
必应学术中相似的文章
[Jianwei Ding]的文章
[Kaiqi Huang]的文章
[Tieniu Tan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。