Color image superresolution using multi-channel data fusion
Zhao Shubin; Han Hua; Peng Silong
2003
会议名称Third International Symposium on Multispectral Image Processing and Pattern Recognition
页码pp 39-44
会议日期2003/10/20-2003/10/22
会议地点中国Beijing China
摘要This paper presents a wavelet-domain Hidden Markov Tree(HMT)-based color image superresolution algorithm using multi-channel data fusion. Because there exists correlations among the three channels of a RGB color image a channel by channel superresolution method almost certain leads to color distortion. In order to solve this problem first the low-resolution color image is converted into a gray-scale image using the spatially-adaptive approach presented in this paper and the resulting gray-scale image must reflect the human perception of edges in the color image; then by superresolving this gray-scale image a high-resolution image is obtained; finally wavelet-domain HMT-based image superresolutions are performed for the three channels of the low-resolution color image using the same posterior state probabilities which reflect the hidden states of the wavelet coefficients of the high-resolution gray-scale image obtained before and thus the resulting high-resolution color image is what we desired. Becasue the correlations among the three channels of a RGB color image are considered there are no color distortions in the reconstructed high-resolution image. Experimental results show that the reconstructed color images have high PSNR and are of high visual quality.
关键词Data Fusion Super Resolution Wavelets Distortion
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/12902
专题智能制造技术与系统研究中心_多维数据分析
通讯作者Zhao Shubin
推荐引用方式
GB/T 7714
Zhao Shubin,Han Hua,Peng Silong. Color image superresolution using multi-channel data fusion[C],2003:pp 39-44.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao Shubin]的文章
[Han Hua]的文章
[Peng Silong]的文章
百度学术
百度学术中相似的文章
[Zhao Shubin]的文章
[Han Hua]的文章
[Peng Silong]的文章
必应学术
必应学术中相似的文章
[Zhao Shubin]的文章
[Han Hua]的文章
[Peng Silong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。