CASIA OpenIR  > 脑网络组研究中心
Predicting individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data
Meng, Xing1,2; Jiang, Rongtao1,2; Lin, Dongdong3,4; Bustillo, Juan5; Jones, Thomas5; Chen, Jiayu3,4; Yu, Qingbao3,4; Du, Yuhui3,4; Zhang, Yu1,2; Jiang, Tianzi1,2,7; Sui, Jing1,2,3,4,7; Calhoun, Vince D.3,4,5,6
2017-01-15
发表期刊NEUROIMAGE
卷号145页码:218-229
文章类型Article
摘要Neuroimaging techniques have greatly enhanced the understanding of neurodiversity (human brain variation across individuals) in both health and disease. The ultimate goal of using brain imaging biomarkers is to perform individualized predictions. Here we proposed a generalized framework that can predict explicit values of the targeted measures by taking advantage of joint information from multiple modalities. This framework also enables whole brain voxel-wise searching by combining multivariate techniques such as ReliefF, clustering, correlation-based feature selection and multiple regression models, which is more flexible and can achieve better prediction performance than alternative atlas-based methods. For 50 healthy controls and 47 schizophrenia patients, three kinds of features derived from resting-state fMRI (fALFF), sMRI (gray matter) and DTI (fractional anisotropy) were extracted and fed into a regression model, achieving high prediction for both cognitive scores (MCCB composite r = 0.7033, MCCB social cognition r = 0.7084) and symptomatic scores (positive and negative syndrome scale [PANSS] positive r = 0.7785, PANSS negative r = 0.7804). Moreover, the brain areas likely responsible for cognitive deficits of schizophrenia, including middle temporal gyrus, dorsolateral prefrontal cortex, striatum, cuneus and cerebellum, were located with different weights, as well as regions predicting PANSS symptoms, including thalamus, striatum and inferior parietal lobule, pinpointing the potential neuromarkers. Finally, compared to a single modality, multimodal combination achieves higher prediction accuracy and enables individualized prediction on multiple clinical measures. There is more work to be done, but the current results highlight the potential utility of multimodal brain imaging biomarkers to eventually inform clinical decision-making. (C) 2016 Elsevier Inc. All rights reserved.
关键词Individualized Prediction Multimodal Matrics Consensus Cognitive Battery (Mccb) Schizophrenia Mri Neuromarker
WOS标题词Science & Technology ; Life Sciences & Biomedicine
DOI10.1016/j.neuroimage.2016.05.026
关键词[WOS]MILD COGNITIVE IMPAIRMENT ; VOXEL-BASED MORPHOMETRY ; BRAIN IMAGING DATA ; WORKING-MEMORY ; ANTIPSYCHOTIC TREATMENT ; DISCRIMINATING SCHIZOPHRENIA ; 1ST-EPISODE SCHIZOPHRENIA ; FUNCTIONAL CONNECTIVITY ; ONSET SCHIZOPHRENIA ; UNCINATE FASCICULUS
收录类别SCI ; SSCI
语种英语
项目资助者National High-Tech Development Plan (863)(2015AA020513) ; "100 Talents Plan" of the Chinese Academy of Sciences ; Chinese National Science Foundation(81471367) ; Strategic Priority Research Program of the Chinese Academy of Sciences(XDB02060005) ; National Institutes of Health(R01MH084898 ; R01EB006841 ; P20GM103472)
WOS研究方向Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Neurosciences ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000390976200007
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/13385
专题脑网络组研究中心
作者单位1.Chinese Acad Sci, Brainnetome Ctr, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
3.Mind Res Network, Albuquerque, NM 87106 USA
4.Lovelace Biomed & Environm Res Inst, Albuquerque, NM 87106 USA
5.Univ New Mexico, Dept Psychiat & Neurosci, Albuquerque, NM 87131 USA
6.Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
7.Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci, Beijing 100190, Peoples R China
8.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Meng, Xing,Jiang, Rongtao,Lin, Dongdong,et al. Predicting individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data[J]. NEUROIMAGE,2017,145:218-229.
APA Meng, Xing.,Jiang, Rongtao.,Lin, Dongdong.,Bustillo, Juan.,Jones, Thomas.,...&Calhoun, Vince D..(2017).Predicting individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data.NEUROIMAGE,145,218-229.
MLA Meng, Xing,et al."Predicting individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data".NEUROIMAGE 145(2017):218-229.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Meng, Xing]的文章
[Jiang, Rongtao]的文章
[Lin, Dongdong]的文章
百度学术
百度学术中相似的文章
[Meng, Xing]的文章
[Jiang, Rongtao]的文章
[Lin, Dongdong]的文章
必应学术
必应学术中相似的文章
[Meng, Xing]的文章
[Jiang, Rongtao]的文章
[Lin, Dongdong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。