CASIA OpenIR  > 毕业生  > 硕士学位论文
运动鞋底生产过程的优化排产研究及应用
杨伟1,2
Subtype工学硕士
Thesis Advisor曾隽芳
2017-05-23
Degree Grantor中国科学院研究生院
Place of Conferral北京
Keyword鞋底生产 订单排产 蚁群算法 动态调度 优化排产系统
Abstract       在鞋底生产过程中,为了快速响应市场,企业采用市场和客户的需求为导向安排生产,这使得面向订单生产是此类企业最重要的生产方式,根据客户的订单需求,实现生产计划的快速响应并合理安排生产是企业面临的重要挑战,订单的准时交付是衡量企业服务水平的重要标准,而基于订单的优化排产就是在企业各种生产资源以及生产工序的约束下,制定合理的车间生产计划,从而使得订单快速及时的完成生产。
        现今大多数企业都是使用人工经验的方式安排生产,这很难合理的优化配置资源,造成了鞋底生产的低效率生产。本文以某一大型运动鞋底生产企业为课题背景,在分析了鞋底生产的工艺流程的基础上,针对鞋底生产过程具有订单并行生产以及工序并行特点,以最小化订单交货延迟以及生产周期为目标,建立了生产能力约束与工序约束下的订单静态排产的混合装配流水车间数学模型。由于混合装配流水车间问题是组合优化问题,属于NP-Hard问题,难以用传统的数学规划等精确方法求解,而蚁群算法在求解复杂的组合优化问题时具有非常好的效果,本文在基本蚁群算法的基础上,针对提出的混合装配流水车间问题对蚁群算法进行改进,用改进的蚁群算法对该模型进行求解,得到订单静态排产甘特图。
       由于鞋底生产过程是一个动态的过程,在订单静态排产的基础上,考虑生产过程中的动态因素以及车间的实际生产反馈对订单进行动态调度,使得订单排产模型能更加反应实际的生产过程,并应用到实际的生产系统。最后从企业信息化的实际需求出发,结合项目开发了面向订单的优化排产系统,重点介绍了订单管理、车间管理、优化排产等模块。应用结果表明,基于订单的优化排产能很好的指导企业进行生产。
Other AbstractIn the sole production, in order to respond to market quickly, the enterprises make production plan based on market and customers, which makes make-to-order production the most important mode of such enterprises. According to the customer’s order demand to realize rapid response to production plan and reasonable arrangements for production is an important challenge faced by the enterprises. Order delivery on time is the crucial measurement of the customer service level in manufacturing enterprises. Optimal production scheduling is to meet customer due-dates under finite resource constraints via making reasonable workshop production plan.

Currently most enterprises are using human experiences to arrange the production, which makes it difficult to rationally optimize the allocation of resources, resulting in inefficient production. This thesis studies on the process of sports sole production of A Shoes Co., Ltd., and based on the analysis of the sole production, it uses the characteristics of parallel order production and parallel operation of the sole production process, aiming at minimizing the order delivery delay and the maximum order completion time(makespan). We establish the hybrid assembly flow shop model of static order scheduling under the production capacity constraints and operation precedence. As to the proposed hybrid assembly flow shop problem is a combinatorial optimization problem, which is NP-hard, it is difficult to be solved with traditional mathematical programming method. The ant colony algorithm has a good effect in solving complex combinatorial optimization problems. This thesis uses improved ant colony algorithm to solve the proposed model thus getting the static order scheduling Gantt chart.

Actually the sole production process is dynamic, based on the static order scheduling result, considering the dynamic factors and the actual production feedback, dynamic scheduling is put forward to make the order scheduling model be more matching to the actual production process, and then applied to the actual production system. Finally, following the requirement of enterprise informationization, a make-to-order information optimization scheduling information system is developed, modules such as order management module, workshop planning management module and optimization scheduling module are presented. The application results show that the proposed order scheduling solution is practical and can be a good guidance for the sole production.
Subject Area控制理论与控制工程
Language中文
Document Type学位论文
Identifierhttp://ir.ia.ac.cn/handle/173211/14801
Collection毕业生_硕士学位论文
Affiliation1.中国科学院自动化研究所
2.中国科学院大学
Recommended Citation
GB/T 7714
杨伟. 运动鞋底生产过程的优化排产研究及应用[D]. 北京. 中国科学院研究生院,2017.
Files in This Item:
File Name/Size DocType Version Access License
硕士论文(杨伟).pdf(2936KB)学位论文 暂不开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[杨伟]'s Articles
Baidu academic
Similar articles in Baidu academic
[杨伟]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[杨伟]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.