Fine-Grained Image Classification via Low-Rank Sparse Coding With General and Class-Specific Codebooks
Zhang, Chunjie1,2,3; Liang, Chao4; Li, Liang2,3; Liu, Jing5; Huang, Qingming2,3,6; Tian, Qi7
2017-07-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号28期号:7页码:1550-1559
文章类型Article
摘要This paper tries to separate fine-grained images by jointly learning the encoding parameters and codebooks through low-rank sparse coding (LRSC) with general and class-specific codebook generation. Instead of treating each local feature independently, we encode the local features within a spatial region jointly by LRSC. This ensures that the spatially nearby local features with similar visual characters are encoded by correlated parameters. In this way, we can make the encoded parameters more consistent for fine-grained image representation. Besides, we also learn a general codebook and a number of class-specific codebooks in combination with the encoding scheme. Since images of fine-grained classes are visually similar, the difference is relatively small between the general codebook and each class-specific codebook. We impose sparsity constraints to model this relationship. Moreover, the incoherences with different codebooks and class-specific codebooks are jointly considered. We evaluate the proposed method on several public image data sets. The experimental results show that by learning general and classspecific codebooks with the joint encoding of local features, we are able to model the differences among different fine-grained classes than many other fine-grained image classification methods.
关键词Fine Grained Image Representation Semantic Space Visual Recognition
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2016.2545112
关键词[WOS]FEATURES ; CATEGORIZATION ; DICTIONARY ; KERNEL ; RECOGNITION ; FORESTS ; SEARCH
收录类别SCI
语种英语
项目资助者Open Project of Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences ; National Basic Research Program of China(2012CB316400 ; National Natural Science Foundation of China(61272329 ; 2015CB351802) ; 61303114 ; 61303154 ; 61332016 ; 61402431)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000404048300006
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15235
专题模式识别国家重点实验室_图像与视频分析
作者单位1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100190, Peoples R China
4.Wuhan Univ, Sch Comp, Natl Engn Res Ctr Multimedia Software, Wuhan 430072, Peoples R China
5.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
6.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
7.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
推荐引用方式
GB/T 7714
Zhang, Chunjie,Liang, Chao,Li, Liang,et al. Fine-Grained Image Classification via Low-Rank Sparse Coding With General and Class-Specific Codebooks[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2017,28(7):1550-1559.
APA Zhang, Chunjie,Liang, Chao,Li, Liang,Liu, Jing,Huang, Qingming,&Tian, Qi.(2017).Fine-Grained Image Classification via Low-Rank Sparse Coding With General and Class-Specific Codebooks.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,28(7),1550-1559.
MLA Zhang, Chunjie,et al."Fine-Grained Image Classification via Low-Rank Sparse Coding With General and Class-Specific Codebooks".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 28.7(2017):1550-1559.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
07448920.pdf(1901KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Chunjie]的文章
[Liang, Chao]的文章
[Li, Liang]的文章
百度学术
百度学术中相似的文章
[Zhang, Chunjie]的文章
[Liang, Chao]的文章
[Li, Liang]的文章
必应学术
必应学术中相似的文章
[Zhang, Chunjie]的文章
[Liang, Chao]的文章
[Li, Liang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 07448920.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。