EFFICIENT SIMILARITY LEARNING FOR ASYMMETRIC HASHING
Cheng Da1,2; Yang Yang1; Kun Ding1; Chunlei Huo1; Shiming Xiang1; Chunhong Pan1
2017
会议名称IEEE International Conference on Image Processing
会议日期2017-9-17
会议地点Beijing, CHINA
摘要
Hashing techniques with asymmetric schemes (e.g., only binarizing the database points) have recently attracted wide attention in the circle of image retrieval. In comparison with those methods which binarize simultaneously both of the query and database points, they not only enjoy the storage and search efficiencies, but also provide higher accuracy.
Gearing to this line, this paper proposes a metric-embedded asymmetric hashing (MEAH) that learns jointly a bilinear similarity measure and binary codes of database points in an unsupervised manner. Technically, the learned similarity measure is able to bridge the gap between the binary codes and the real-valued codes, which are represented possibly
with different dimensions. What is more, this measure is capable of preserving the global structure hidden in the database. Extensive experiments on two public image benchmarks
demonstrate the superiority of our approach over the several state-of-the-art unsupervised hashing methods.
收录类别EI
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/15384
专题模式识别国家重点实验室_先进数据分析与学习
通讯作者Chunlei Huo
作者单位1.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2.School of Computer and Control Engineering, University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Cheng Da,Yang Yang,Kun Ding,et al. EFFICIENT SIMILARITY LEARNING FOR ASYMMETRIC HASHING[C],2017.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
dacheng.pdf(278KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cheng Da]的文章
[Yang Yang]的文章
[Kun Ding]的文章
百度学术
百度学术中相似的文章
[Cheng Da]的文章
[Yang Yang]的文章
[Kun Ding]的文章
必应学术
必应学术中相似的文章
[Cheng Da]的文章
[Yang Yang]的文章
[Kun Ding]的文章
相关权益政策
暂无数据
收藏/分享
文件名: dacheng.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。