Image enhancement for outdoor long-range surveillance using IQ-learning multiscale Retinex
Liu, Haoting1; Lu, Hanqing1; Zhang, Yu2
2017-09-01
发表期刊IET IMAGE PROCESSING
卷号11期号:9页码:786-795
文章类型Article
摘要The visible light camera-based long-range surveillance always suffers from the complex atmosphere. When applying some traditional image enhancement methods, the computational effects behave limited because of their poor environment adaptability. To conquer that problem, a blind image quality (IQ) learning-based multiscale Retinex, i.e. the IQ-learning multiscale Retinex, is proposed. First, a series of typical degenerated images are collected. Second, several blind IQ evaluation metrics are computed for the dataset above. They are the image brightness degree, the image region contrast degree, the image edge blur degree, the image colour quality degree, and the image noise degree. Third, a wavelet transform multi-scale Retinex (WT_MSR) is used to carry out the basic image enhancement. A kind of optimal enhancement is implemented by the subjective evaluation and tuning of multiple optimal control parameters (MOCPs) of WT_MSR for these degenerated dataset. Fourth, the back propagation neural network (BPNN) is used to build a connection between the IQ metrics and the MOCPs. Finally, when a new image is captured, this system will compute its IQ metrics and estimate the MOCPs for the WT_MSR by BPNN; then a kind of optimal enhancement can be realised. Many outdoor applications have shown the effectiveness of proposed method.
关键词Image Enhancement Video Surveillance Image Restoration Wavelet Transforms Neural Nets Backpropagation Outdoor Long-range Surveillance Blind Iq-learning Multiscale Retinex Visible Light Camera-based Image Enhancement Method Blind Image Quality Learning Multiscale Retinex Image Brightness Degree Image Region Contrast Degree Image Edge Blur Degree Image Colour Quality Degree Image Noise Degree Wavelet Transform Multiscale Retinex Wt_msr Multiple Optimal Control Parameter Mocp Backpropagation Neural Network Bpnn
WOS标题词Science & Technology ; Technology
DOI10.1049/iet-ipr.2016.0972
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61501016)
WOS研究方向Computer Science ; Engineering ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology
WOS记录号WOS:000410158000014
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20724
专题模式识别国家重点实验室_图像与视频分析
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
2.Astronaut Res & Training Ctr China, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liu, Haoting,Lu, Hanqing,Zhang, Yu. Image enhancement for outdoor long-range surveillance using IQ-learning multiscale Retinex[J]. IET IMAGE PROCESSING,2017,11(9):786-795.
APA Liu, Haoting,Lu, Hanqing,&Zhang, Yu.(2017).Image enhancement for outdoor long-range surveillance using IQ-learning multiscale Retinex.IET IMAGE PROCESSING,11(9),786-795.
MLA Liu, Haoting,et al."Image enhancement for outdoor long-range surveillance using IQ-learning multiscale Retinex".IET IMAGE PROCESSING 11.9(2017):786-795.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Haoting]的文章
[Lu, Hanqing]的文章
[Zhang, Yu]的文章
百度学术
百度学术中相似的文章
[Liu, Haoting]的文章
[Lu, Hanqing]的文章
[Zhang, Yu]的文章
必应学术
必应学术中相似的文章
[Liu, Haoting]的文章
[Lu, Hanqing]的文章
[Zhang, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。