Multi-View Ground-Based Cloud Recognition by Transferring Deep Visual Information
Zhang, Zhong1; Li, Donghong1; Liu, Shuang1; Xiao, Baihua2; Cao, Xiaozhong3
2018-05-01
发表期刊APPLIED SCIENCES-BASEL
卷号8期号:5
文章类型Article
摘要Since cloud images captured from different views possess extreme variations, multi-view ground-based cloud recognition is a very challenging task. In this paper, a study of view shift is presented in this field. We focus both on designing proper feature representation and learning distance metrics from sample pairs. Correspondingly, we propose transfer deep local binary patterns (TDLBP) and weighted metric learning (WML). On one hand, to deal with view shift, like variations of illuminations, locations, resolutions and occlusions, we first utilize cloud images to train a convolutional neural network (CNN), and then extract local features from the part summing maps (PSMs) based on feature maps. Finally, we maximize the occurrences of regions for the final feature representation. On the other hand, the number of cloud images in each category varies greatly, leading to the unbalanced similar pairs. Hence, we propose a weighted strategy for metric learning. We validate the proposed method on three cloud datasets (the MOC_e, IAP_e, and CAMS_e) that are collected by different meteorological organizations in China, and the experimental results show the effectiveness of the proposed method.
关键词Ground-based Cloud Recognition Transfer Deep Local Binary Patterns Weighted Metric Learning Convolutional Neural Network
WOS标题词Science & Technology ; Physical Sciences ; Technology
DOI10.3390/app8050748
关键词[WOS]TEXTURE CLASSIFICATION ; FEATURE-EXTRACTION ; SKY IMAGES
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61501327 ; Natural Science Foundation of Tianjin(17JCZDJC30600 ; Fund of Tianjin Normal University(135202RC1703) ; Open Projects Program of National Laboratory of Pattern Recognition(201700001 ; China Scholarship Council(201708120039 ; Tianjin Higher Education Creative Team Funds Program ; 61711530240) ; 15JCQNJC01700) ; 201800002) ; 201708120040)
WOS研究方向Chemistry ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号WOS:000437326800095
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21837
专题复杂系统管理与控制国家重点实验室_影像分析与机器视觉
作者单位1.Tianjin Normal Univ, Tianjin Key Lab Wireless Mobile Commun & Power Tr, Tianjin 300387, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
3.China Meteorol Adm, Meteorol Observat Ctr, Beijing 100081, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Zhong,Li, Donghong,Liu, Shuang,et al. Multi-View Ground-Based Cloud Recognition by Transferring Deep Visual Information[J]. APPLIED SCIENCES-BASEL,2018,8(5).
APA Zhang, Zhong,Li, Donghong,Liu, Shuang,Xiao, Baihua,&Cao, Xiaozhong.(2018).Multi-View Ground-Based Cloud Recognition by Transferring Deep Visual Information.APPLIED SCIENCES-BASEL,8(5).
MLA Zhang, Zhong,et al."Multi-View Ground-Based Cloud Recognition by Transferring Deep Visual Information".APPLIED SCIENCES-BASEL 8.5(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhong]的文章
[Li, Donghong]的文章
[Liu, Shuang]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhong]的文章
[Li, Donghong]的文章
[Liu, Shuang]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhong]的文章
[Li, Donghong]的文章
[Liu, Shuang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。