CASIA OpenIR  > 先进数据分析与学习团队
Semantic labeling in very high resolution images via a self-cascaded convolutional neural network
Liu, Yongcheng1,2; Fan, Bin1; Wang, Lingfeng1; Bai, Jun3; Xiang, Shiming1; Pan, Chunhong1
发表期刊ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
ISSN0924-2716
2018-11-01
卷号145页码:78-95
通讯作者Fan, Bin(bfan@nlpr.ia.ac.cn)
摘要Semantic labeling for very high resolution (VHR) images in urban areas, is of significant importance in a wide range of remote sensing applications. However, many confusing manmade objects and intricate fine-structured objects make it very difficult to obtain both coherent and accurate labeling results. For this challenging task, we propose a novel deep model with convolutional neural networks (CNNs), i.e., an end-to-end self-cascaded network (ScasNet). Specifically, for confusing manmade objects, ScasNet improves the labeling coherence with sequential global-to-local contexts aggregation. Technically, multi-scale contexts are captured on the output of a CNN encoder, and then they are successively aggregated in a self-cascaded manner. Meanwhile, for fine-structured objects, ScasNet boosts the labeling accuracy with a coarse-to-fine refinement strategy. It progressively refines the target objects using the low-level features learned by CNN's shallow layers. In addition, to correct the latent fitting residual caused by multi-feature fusion inside ScasNet, a dedicated residual correction scheme is proposed. It greatly improves the effectiveness of ScasNet. Extensive experimental results on three public datasets, including two challenging benchmarks, show that ScasNet achieves the state-of-the-art performance. (C) 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
关键词Semantic labeling Convolutional neural networks (CNNs) Multi-scale contexts End-to-end
DOI10.1016/j.isprsjprs.2017.12.007
关键词[WOS]REMOTE-SENSING IMAGERY ; CLASSIFICATION ; RECOGNITION ; FEATURES
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[91646207] ; National Natural Science Foundation of China[61403375] ; National Natural Science Foundation of China[61573352] ; National Natural Science Foundation of China[61403376] ; National Natural Science Foundation of China[91438105]
项目资助者National Natural Science Foundation of China
WOS研究方向Physical Geography ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geography, Physical ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000449125400006
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/22798
专题先进数据分析与学习团队
通讯作者Fan, Bin
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
3.Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Inst Automat, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yongcheng,Fan, Bin,Wang, Lingfeng,et al. Semantic labeling in very high resolution images via a self-cascaded convolutional neural network[J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,2018,145:78-95.
APA Liu, Yongcheng,Fan, Bin,Wang, Lingfeng,Bai, Jun,Xiang, Shiming,&Pan, Chunhong.(2018).Semantic labeling in very high resolution images via a self-cascaded convolutional neural network.ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING,145,78-95.
MLA Liu, Yongcheng,et al."Semantic labeling in very high resolution images via a self-cascaded convolutional neural network".ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 145(2018):78-95.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Yongcheng]的文章
[Fan, Bin]的文章
[Wang, Lingfeng]的文章
百度学术
百度学术中相似的文章
[Liu, Yongcheng]的文章
[Fan, Bin]的文章
[Wang, Lingfeng]的文章
必应学术
必应学术中相似的文章
[Liu, Yongcheng]的文章
[Fan, Bin]的文章
[Wang, Lingfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。