CASIA OpenIR  > 学术期刊  > 自动化学报
基于粒度聚类的转炉炼钢氧气消耗量预测
阳青锋; 赖旭芝; 杜胜; 胡杰; 陈略峰; 吴敏
Source Publication自动化学报
ISSN0254-4156
2024
Volume50Issue:1Pages:132-142
Abstract转炉炼钢是钢铁企业的主要耗氧工序,预测转炉炼钢的氧气消耗量对氧气系统合理调度、保证生产安全具有重要意义.考虑到转炉冶炼工况多、钢种数据粒度不统一,提出一种基于粒度聚类的转炉炼钢氧气消耗量预测方法.首先,利用孤立森林异常检测法剔除历史数据库中的异常数据;接着,采用皮尔逊相关性分析和互信息相关系数选取相关影响因子,对不同钢种数据进行信息粒化,实现数据特征提取和维度统一,使用模糊C均值(Fuzzy C-means, FCM)划分工况并建立不同工况下的氧气消耗量预测子模型;最后,利用企业的实际生产数据进行实验,验证所提方法的准确性和有效性.
Keyword转炉炼钢 氧气消耗预测 信息粒化 工况识别
DOI10.16383/j.aas.c230333
Citation statistics
Document Type期刊论文
Identifierhttp://ir.ia.ac.cn/handle/173211/55759
Collection学术期刊_自动化学报
Recommended Citation
GB/T 7714
阳青锋,赖旭芝,杜胜,等. 基于粒度聚类的转炉炼钢氧气消耗量预测[J]. 自动化学报,2024,50(1):132-142.
APA 阳青锋,赖旭芝,杜胜,胡杰,陈略峰,&吴敏.(2024).基于粒度聚类的转炉炼钢氧气消耗量预测.自动化学报,50(1),132-142.
MLA 阳青锋,et al."基于粒度聚类的转炉炼钢氧气消耗量预测".自动化学报 50.1(2024):132-142.
Files in This Item: Download All
File Name/Size DocType Version Access License
AAS-CN-2023-0333.pdf(2149KB)期刊论文出版稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[阳青锋]'s Articles
[赖旭芝]'s Articles
[杜胜]'s Articles
Baidu academic
Similar articles in Baidu academic
[阳青锋]'s Articles
[赖旭芝]'s Articles
[杜胜]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[阳青锋]'s Articles
[赖旭芝]'s Articles
[杜胜]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: AAS-CN-2023-0333.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.