CASIA OpenIR  > 学术期刊  > 自动化学报
融合知识的多视图属性网络异常检测模型
杜航原; 曹振武; 王文剑; 白亮
Source Publication自动化学报
ISSN0254-4156
2023
Volume49Issue:8Pages:1732-1744
Abstract属性网络异常检测在网络安全、电子商务和金融交易等领域中具有重要的理论与现实意义,近年来受到了越来越多的关注.大多数异常检测方法凭借网络有限的属性或结构信息进行决策生成,往往难以对异常模式做出可靠的描述.此外,网络节点对应的实体往往关联着丰富的领域知识,这些知识对于异常的识别具有重要的潜在价值.针对上述情况,提出一种融合知识的多视图网络异常检测模型,在多视图学习模式下通过数据与知识的互补融合实现了对异常节点的有效识别.首先,使用TransR模型由领域知识图谱抽取知识向量表示,并借助输入网络的拓扑关系构造其孪生网络.接着,在多视图学习框架下构建属性编码器和知识编码器,分别将属性网络及其孪生网络嵌入到各自的表示空间,并聚合为统一网络表示.最后,综合不同维度上的重构误差进行节点异常分数评价,从而识别网络中的异常节点.在真实网络数据集上的对比实验表明,提出的模型能够实现对领域知识的有效融合,并获得优于基线方法的异常检测性能.
Keyword属性网络 异常检测 图神经网络 知识融合 多视图学习
DOI10.16383/j.aas.c220629
Citation statistics
Document Type期刊论文
Identifierhttp://ir.ia.ac.cn/handle/173211/56088
Collection学术期刊_自动化学报
Recommended Citation
GB/T 7714
杜航原,曹振武,王文剑,等. 融合知识的多视图属性网络异常检测模型[J]. 自动化学报,2023,49(8):1732-1744.
APA 杜航原,曹振武,王文剑,&白亮.(2023).融合知识的多视图属性网络异常检测模型.自动化学报,49(8),1732-1744.
MLA 杜航原,et al."融合知识的多视图属性网络异常检测模型".自动化学报 49.8(2023):1732-1744.
Files in This Item:
File Name/Size DocType Version Access License
AAS-CN-2022-0629.pdf(1970KB)期刊论文出版稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[杜航原]'s Articles
[曹振武]'s Articles
[王文剑]'s Articles
Baidu academic
Similar articles in Baidu academic
[杜航原]'s Articles
[曹振武]'s Articles
[王文剑]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[杜航原]'s Articles
[曹振武]'s Articles
[王文剑]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: AAS-CN-2022-0629.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.