CASIA OpenIR  > 学术期刊  > 自动化学报
基于最优工况迁移的高炉铁水硅含量预测方法
蒋朝辉; 许川; 桂卫华; 蒋珂
Source Publication自动化学报
ISSN0254-4156
2022
Volume48Issue:1Pages:194-206
Abstract高炉铁水硅含量是铁水品质与炉况的重要表征,冶炼过程关键参数频繁波动及大时滞特性给高炉铁水硅含量预测带来了巨大挑战.提出一种基于最优工况迁移的高炉铁水硅含量预测方法.首先,针对过程变量频繁波动问题,提出基于邦费罗尼指数的自适应密度峰值聚类算法,实现对高炉冶炼过程变量的工况划分,并建立不同工况硅含量预测子模型.其次,针对冶炼过程的大时滞特性,定义相邻时间节点间的硅含量工况迁移代价函数,并提出多源路径寻优算法,实现冶炼过程中硅含量最优工况迁移路径及当前时刻硅含量最优预测值的求解.最后,基于工业现场数据验证了所提方法的有效性与准确性.
Keyword高炉炼铁 铁水硅含量 预测 工况迁移 密度峰值聚类
DOI10.16383/j.aas.c200980
Citation statistics
Document Type期刊论文
Identifierhttp://ir.ia.ac.cn/handle/173211/56440
Collection学术期刊_自动化学报
Recommended Citation
GB/T 7714
蒋朝辉,许川,桂卫华,等. 基于最优工况迁移的高炉铁水硅含量预测方法[J]. 自动化学报,2022,48(1):194-206.
APA 蒋朝辉,许川,桂卫华,&蒋珂.(2022).基于最优工况迁移的高炉铁水硅含量预测方法.自动化学报,48(1),194-206.
MLA 蒋朝辉,et al."基于最优工况迁移的高炉铁水硅含量预测方法".自动化学报 48.1(2022):194-206.
Files in This Item: Download All
File Name/Size DocType Version Access License
AAS-CN-2020-0980.pdf(13570KB)期刊论文出版稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[蒋朝辉]'s Articles
[许川]'s Articles
[桂卫华]'s Articles
Baidu academic
Similar articles in Baidu academic
[蒋朝辉]'s Articles
[许川]'s Articles
[桂卫华]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[蒋朝辉]'s Articles
[许川]'s Articles
[桂卫华]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: AAS-CN-2020-0980.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.