CASIA OpenIR  > 毕业生  > 博士学位论文
基于神经网络最优化的交通控制技术
其他题名Traffic control based on neural optimization
许静
学位类型工学博士
导师郁文生
2007-05-28
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业控制理论与控制工程
关键词神经动态最优化 自适应动态规划 交通控制 当地简单/远程复杂 移动agent Neural Dynamic Optimization Adaptive Dynamic Programming Traffic Control Lsrc Mobile Agent
摘要本文结合神经动态最优化和自适应动态规划两种技术,研究交通控制系统中的若干基本问题,给出更为有效的交通控制算法,有助于解决或缓解当前的交通拥堵问题,因此具有重要的意义。 本文首先研究了城市交叉路口过饱和交通状态下的最优信号配时问题。对于二相位和四相位情况,基于神经动态最优化方法,分别给出了最优信号配时器。 进而研究了高速公路系统中可变速度限制最优协调控制问题。建模方面,基于驾驶员顺从度与限速强度成反比的观点,给出更为合理的可变限速模型;控制方面,采用神经动态最优化方法设计了最优限速协调控制器。 基于增强式学习中的适合度轨迹机制,提出了ADHDP(λ)算法。该算法将极大地推动ADHDP方法用于在线学习控制问题。 对于Narendra基准控制问题,给出了两种新的基于DHP的设计方法。 研究了高速公路系统中单个入口匝道以及多个入口匝道基于自适应动态规划的控制方法。对于单个入口匝道控制,设计了ADHDP控制器。对于多匝道协调控制,根据是否考虑入口匝道排队,给出了两种DHP设计方案。 最后,本文探讨了上述交通控制算法在交通控制系统中的嵌入方式,提出以网络为背景、采用“当地简单/远程复杂”思想、通过移动Agent机制予以实现的框架。
其他摘要A promising measure for solving traffic problems seems to exploit the existing infrastructure through efficient dynamic traffic management and control. For this purpose, two advanced neural techniques, i.e. neural dynamic optimization (NDO) and adaptive dynamic programming (ADP), are adopted for some fundamental traffic control problems in this dissertation. Specifically, the optimal signal timing problem is considered for an urban intersection under oversaturated traffic condition. Based on the technique of NDO, two optimal signal timing controllers are proposed for the two-phase case and the four-phase case, respectively. Based on the technique of NDO, the coordinated control of variable speed limits in highway systems is also considered. By viewing the obedience of drivers inverse proportional to the strength of limiting speeds, a new traffic model is proposed in order to characterize the effect of speed limits. With this new traffic model, the NDO controller is developed and tested. Based on the mechanism of eligibility traces in reinforcement learning, the algorithm of ADHDP(λ) is proposed. For the benchmark problem of Narendra system, two new DHP designs are proposed, where primary utility functions are defined exclusively by information at the current time. Based on the technique of ADP, the problems of local ramp metering and coordinated ramp metering are considered. Simulation studies demonstrate ADP controllers with good control performance and strong robustness. Finally, implementation issues are discussed for those traffic control algorithms proposed in this dissertation. Specifically, a framework is built by combining many advanced concepts or techniques, such as networked control, local simple remote complex (LSRC), mobile agent, and so on.
馆藏号XWLW1089
其他标识符200418014628093
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/5980
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
许静. 基于神经网络最优化的交通控制技术[D]. 中国科学院自动化研究所. 中国科学院研究生院,2007.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20041801462809(2204KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[许静]的文章
百度学术
百度学术中相似的文章
[许静]的文章
必应学术
必应学术中相似的文章
[许静]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。