CASIA OpenIR  > 毕业生  > 硕士学位论文
一种新的神经模糊系统及其对“当地简单远程复杂”控制原理的实现
其他题名A New Neuro-fuzzy System and Its Implementation of“Local Simple Remote Complex”Control Principle
陈龙
学位类型工学硕士
导师王飞跃
2003-05-30
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业控制理论与控制工程
关键词神经模糊系统 学习算法 “远程复杂当地简单” 控制 Nuero-fuzzy System Learning Algorithm “local Simple Remote Complex” Control
摘要模糊推理系统由于有着对专家知识的良好表达和对人类推理过程的成功模 仿而得到了广泛应用。但是人们很快认识到一般模糊推理系统不易学习的缺点, 并将有着很强的学习能力的神经网络系统同它结合起来,形成了“神经模糊系 统”。 因为传统的神经模糊系统都存在着一些缺点,论文针对这些缺点首先提出 了一种新的神经模糊系统。新的神经模糊系统采用Marndani型模糊规则,首先 避免了使用T-S型规则不易使用专家知识和不易理解的缺点。另外,新的神经 模糊系统的规则结论部分语言变量采用离散隶属度函数。这样,任何形式的结 论部分语言变量的隶属度函数在初始时都可以用一个离散函数充分逼近它。而 在后面的学习过程中,由于离散函数没有局限于一种函数形式,所以就不再需 要关心隶属度函数的形式,学习过程会自动调整它。新的神经模糊系统由模糊 推理系统和其一一对应的神经网络系统组成,论文提出了它的基于RBF神经网 络的结构学习方法和基于梯度的参数学习方法。论文还成功的将新的神经模糊 系统应用到智能交通系统的几个重要问题中。 随着控制理论的发展,控制算法实现越来越依靠强大的计算系统的支持。 与此同时,人们对控制器本身的要求却越来越趋向于体积小型化,实现简单化。 这样,在复杂计算和简单实现之间出现了矛盾。为了克服这个矛盾,使用“当 地简单远程复杂”控制原理是个合适的选择。 为了实现“当地简单远程复杂”控制原理必须要有本地和远程对等的两个 部件。其中当地的部件要求实现简单,学习能力不是必需的;而远程和本地对 等的部件却不必要求实现起来简单,关键要求是有很强的学习和优化适于本地 部件使用的参数的能力。论文利用新的神经模糊系统中模糊推理系统部分和神 经网络系统部分的一一对应特点,将实现简单的模糊推理系统放在当地,而将 易学习的复杂的神经网络系统放到远程。远程的神经网络系统从当地获得学习 数据,在训练获得优化参数后再将参数下传到当地的模糊推理系统,令模糊推 理系统获得优化的性能,从而最终实现了“当地简单远程复杂”控制原理。
其他摘要Because of its well capability in expressing the experts' knowledge and simulating the inference process of human being, fuzzy inference system is applied widely. However, people found soon that fuzzy inference system is not good at learning from data. Then the learnable neural network is combined with the fuzzy inference system to build the "Neuro-fuzzy System". There are some disadvantages in the traditional neuro-fuzzy systems, and to cop with those disadvantages, this paper provides a new neuro-fuzzy system. The new system using Mamdani type fuzzy rules avoids the disadvantages of being hard to incorporate experts' knowledge and hard to understand. In the second place, the new system uses discrete membership functions at the consequent parts of the IF-THEN rules. So, any original membership function can be approximated by a discrete membership function and the shape of the membership function can be adjusted in training procedure in turn. The new neuro-fuzzy system includes a fuzzy inference system and its one to one mapping neural network, and this paper also provides the RBF neural network based structural learning algorithm and the gradient-based parameters learning algorithm for the new system. This paper also successfully applied the new neuro-fuzzy system in several important problems of Intelligent Transportation Systems. With the development of control theory, the implementation of control algorithms more and more depends on the powerful computational systems. On the other hand, people are asking for smaller and simpler controller. Then the conflict of complex computation and simple implementation appears. To solve the conflict, "Local Simple Remote Complex" control principle is a pod choice. Two correspondent parts at local and remote fields are integrant parts to implement the "Local Simple Remote Complex" control principle. The local part should be simple and no need to be learnable, but the remote part should have well capability of learning and optimizing parameters used at the local part. This paper utilizes the one to one mapping characteristic of the new neuro-fuzzy system and puts the simple fuzzy inference system at the local field while puts the learnable complex neural network at the remote field. Remote neural network gets the training data from the local field and optimizes the parameters, which in turn, are sent back to the local fuzzy inference to optimize its performance. In the long run, the "Local Simple Remote Complex" control principle is implemented successfully
馆藏号XWLW715
其他标识符715
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6818
专题毕业生_硕士学位论文
推荐引用方式
GB/T 7714
陈龙. 一种新的神经模糊系统及其对“当地简单远程复杂”控制原理的实现[D]. 中国科学院自动化研究所. 中国科学院研究生院,2003.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[陈龙]的文章
百度学术
百度学术中相似的文章
[陈龙]的文章
必应学术
必应学术中相似的文章
[陈龙]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。