CASIA OpenIR  > 毕业生  > 硕士学位论文
城市高速公路路段动态交通流的微观建模
Alternative TitleA Microscopic Dynamic Model for Highway Sections
李灵犀
Subtype工学硕士
Thesis Advisor王飞跃
2002-12-05
Degree Grantor中国科学院研究生院
Place of Conferral中国科学院自动化研究所
Degree Discipline控制理论与控制工程
Keyword高速公路 微观建模 混合交通流 模糊推理 仿真 Highway System Micro-level Modeling Mixed Traffic Flow Fuzzy Reasoning Simulation
Abstract高速公路的建模是国内外交通工程研究中的热点问题之一。然而,目前的 高速公路模型大部分都是宏观交通模型,将车看成相同的个体而没有考虑驾驶 员的行为差异对实际交通流的影响。但我们知道,高速公路上的车流是多车道 的交通流,因此,当各车道密度或速度不同时,就容易出现换道现象,影响交 通流。特别是在高速公路的出口匝道和入口匝道附近,频繁的换道有时会严重 影响交通的正常有效流动。所以,研究微观交通模型,尤其是研究车辆跟随以 及车辆换道等驾驶员微观行为对交通流的影响,是十分必要的。 本文结合前人对高速公路宏观模型的研究,将微观模型和宏观模型结合起 来,建立了一个较为全面的高速公路驾驶员行为模型。首先,将高速公路上的 驾驶员分为五类,分析了在一个三车道的高速公路上,自由流和拥挤流中后车 的速度与两车间距之间的关系;用模糊推理来估计两种交通流在实际混合流中 所占的比例;再导出宏观的速度-密度关系,在此基础上建立了高速公路多车 道交通流行为模型。然后,用实际交通流流量,速度,车道占有率等数据来估 计出模型参数,并对不同交通流组成分别进行了仿真,得到一系列流量—速度 曲线。最后,根据模型和仿真结果,就驾驶员不同的开车行为对交通流的影响 展开了讨论。 采用实际的交通流数据利用本文所提的模型在不同交通条件下进行仿真, 我们可以分析得到:本文建立的驾驶员行为模拟的高速公路混合交通流模型是 一个宏观和微观结合的模型;并且通过调整该模型中的驾驶员类型所占比例, 我们能获取混合交通流中驾驶员行为对交通流影响的信息,可以通过它来改善 交通流的状况,对交通流进行预测和控制,比宏观模型更符合实际的交通状况。 所以这个模型对日后的高速公路研究有着重要的意义。
Other AbstractThe modeling of driving behaviors on highways is one of the focal areas in traffic engineering. Currently, there are many highway system models, but most of them are mainly macroscopic .traffic models, which treat the individual cars as the same object and ignore each driver to the whole highway system. However, as we know, the flow on the highway system is the mixed flow with multi-lanes. So, when there are difference in density and velocity of each lane, it becomes easier for cars to change lanes. This action happens even frequently at the on-ramp and off-ramp areas, which may seriously impact the whole traffic flow. So making researches in the microscopic traffic model especially the impact of driver behavior such as car-following and lane-changing to the traffic system is very important. In this paper we propose our highway traffic model with consideration of both micro and macro level models. First we classify, the drivers on the highway as five types, analyze the relationship between the distance of the head and the following cars and the following car's velocity on the highway with three lanes in uncongested flow and congested flow separately; then we use fuzzy reasoning to estimate the percentile of each type of flow; the following we get the macro speed-density relationship, based on it we propose our highway traffic model; in the simulation the data of actual flow, velocity and occupancy are introduced to estimate the parameters in our model, and different simulation results are obtained with different type of mixed flow. At last based on the model and simulation results, we discuss the impact of individual driver behavior to the whole highway system. In the simulation, actual data are used in our model under different traffic situations. We can see that our highway mixed flow model is with both micro and macro level; we can get the impact information of driver behavior to the whole system through changing the percentile of the five driver types; also we can use it to improve the highway performance through forecasting and control based on our model, more according with the real traffic situation then macro-level models. So this model is important for the following investigation in the highway system.
shelfnumXWLW716
Other Identifier716
Language中文
Document Type学位论文
Identifierhttp://ir.ia.ac.cn/handle/173211/6874
Collection毕业生_硕士学位论文
Recommended Citation
GB/T 7714
李灵犀. 城市高速公路路段动态交通流的微观建模[D]. 中国科学院自动化研究所. 中国科学院研究生院,2002.
Files in This Item:
File Name/Size DocType Version Access License
硕士生学位论文-716.pdf(8274KB) 暂不开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[李灵犀]'s Articles
Baidu academic
Similar articles in Baidu academic
[李灵犀]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李灵犀]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.