CASIA OpenIR  > 智能感知与计算研究中心
Semi-supervised learning and feature evaluation for RGB-D object recognition
Cheng, Yanhua; Zhao, Xin; Huang, Kaiqi; Tan, Tieniu
2015-10-01
发表期刊COMPUTER VISION AND IMAGE UNDERSTANDING
卷号139期号:5页码:149-160
文章类型Article
摘要With new depth sensing technology such as Kinect providing high quality synchronized RGB and depth images (RGB-D data), combining the two distinct views for object recognition has attracted great interest in computer vision and robotics community. Recent methods mostly employ supervised learning methods for this new RGB-D modality based on the two feature sets. However, supervised learning methods always depend on large amount of manually labeled data for training models. To address the problem, this paper proposes a semi-supervised learning method to reduce the dependence on large annotated training sets. The method can effectively learn from relatively plentiful unlabeled data, if powerful feature representations for both the RGB and depth view can be extracted. Thus, a novel and effective feature termed CNN-SPM-RNN is proposed in this paper, and four representative features (KDES [1], CKM [2], HMP [3] and CNN-RNN [4]) are evaluated and compared with ours under the unified semi-supervised learning framework. Finally, we verify our method on three popular and publicly available RGB-D object databases. The experimental results demonstrate that, with only 20% labeled training set, the proposed method can achieve competitive performance compared with the state of the arts on most of the databases. (C) 2015 Elsevier Inc. All rights reserved.
关键词Rgb-d Object Recognition Feature Representation Feature Evaluation Semi-supervised Learning
WOS标题词Science & Technology ; Technology
DOI10.1016/j.cviu.2015.05.007
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000361081600012
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8980
专题智能感知与计算研究中心
作者单位Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Ctr Res Intelligent Percept & Comp, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Yanhua,Zhao, Xin,Huang, Kaiqi,et al. Semi-supervised learning and feature evaluation for RGB-D object recognition[J]. COMPUTER VISION AND IMAGE UNDERSTANDING,2015,139(5):149-160.
APA Cheng, Yanhua,Zhao, Xin,Huang, Kaiqi,&Tan, Tieniu.(2015).Semi-supervised learning and feature evaluation for RGB-D object recognition.COMPUTER VISION AND IMAGE UNDERSTANDING,139(5),149-160.
MLA Cheng, Yanhua,et al."Semi-supervised learning and feature evaluation for RGB-D object recognition".COMPUTER VISION AND IMAGE UNDERSTANDING 139.5(2015):149-160.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Semi-supervised lear(3157KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cheng, Yanhua]的文章
[Zhao, Xin]的文章
[Huang, Kaiqi]的文章
百度学术
百度学术中相似的文章
[Cheng, Yanhua]的文章
[Zhao, Xin]的文章
[Huang, Kaiqi]的文章
必应学术
必应学术中相似的文章
[Cheng, Yanhua]的文章
[Zhao, Xin]的文章
[Huang, Kaiqi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Semi-supervised learning and feature evaluation for RGB-D object recognition.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。