CASIA OpenIR  > 中国科学院分子影像重点实验室
Prediction of Malignant and Benign of Lung Tumor using a Quantitative Radiomic Method
Wang, Jun1,2; Liu, Xia1; Dong, Di2; Song, Jiangdian3; Xu, Min2; Zang, Yali2; Tian, Jie2; Tian Jie
2016
会议名称Annual International Conference of the IEEE Engineering in Medicine and Biology Society
会议录名称Annual International Conference of the IEEE Engineering in Medicine and Biology Society
会议日期2016-8
会议地点Orlando, Florida USA
摘要Lung cancer is the leading cause of cancer mortality around the world, the early diagnosis of lung cancer plays a very important role in therapeutic regimen selection. However, lung cancers are spatially and temporally heterogeneous; this limits the use of invasive biopsy. But radiomics which refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features has the ability to capture intra-tumoural heterogeneity in a non-invasive way. Here we carry out a radiomic analysis of 150 features quantifying lung tumour image intensity, shape and texture. These features are extracted from 593 patients computed tomography (CT) data on Lung Image Database Consortium Image Database Resource Initiative (LIDC-IDRI) dataset. By using support vector machine, we find that a large number of quantitative radiomic features have diagnosis power. The accuracy of prediction of malignant of lung tumor is 86% in training set and 76.1% in testing set. As CT imaging of lung tumor is widely used in routine clinical practice, our radiomic classifier will be a valuable tool which can help clinical doctor diagnose the lung cancer.
关键词Radiomics
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/12479
专题中国科学院分子影像重点实验室
通讯作者Liu, Xia; Zang, Yali; Tian Jie
作者单位1.Measurement-Control Technology and Communications Engineering School, Harbin University of Science and Technology
2.Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences
3.Sino-Dutch Biomedical and Information Engineering School, Northeastern University
推荐引用方式
GB/T 7714
Wang, Jun,Liu, Xia,Dong, Di,et al. Prediction of Malignant and Benign of Lung Tumor using a Quantitative Radiomic Method[C],2016.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2016.EMBC16_0586_FI.(272KB)会议论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Jun]的文章
[Liu, Xia]的文章
[Dong, Di]的文章
百度学术
百度学术中相似的文章
[Wang, Jun]的文章
[Liu, Xia]的文章
[Dong, Di]的文章
必应学术
必应学术中相似的文章
[Wang, Jun]的文章
[Liu, Xia]的文章
[Dong, Di]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2016.EMBC16_0586_FI.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。