Hierarchically Supervised Deconvolutional Network for Semantic Video Segmentation
Wang, Yuhang1,2; Liu, Jing1; Li, Yong1,2; Fu, Jun1,2; Xu, Min3; Lu, Hanqing1; Jing Liu
2017-04-01
发表期刊PATTERN RECOGNITION
卷号64期号:1页码:437-445
文章类型Article
摘要Semantic video segmentation is a challenging task of fine-grained semantic understanding of video data. In this paper, we present a jointly trained deep learning framework to make the best use of spatial and temporal information for semantic video segmentation. Along the spatial dimension, a hierarchically supervised deconvolutional neural network (HDCNN) is proposed to conduct pixel-wise semantic interpretation for single video frames. HDCNN is constructed with convolutional layers in VGG-net and their mirrored deconvolutional structure, where all fully connected layers are removed. And hierarchical classification layers are added to multi scale deconvolutional features to introduce more contextual information for pixel-wise semantic interpretation. Besides, a coarse-to-fine training strategy is adopted to enhance the performance of foreground object segmentation in videos. Along the temporal dimension, we introduce Transition Layers upon the structure of HDCNN to make the pixel-wise label prediction consist with adjacent, pixels across space and time domains. The learning process of the Transition Layers can be implemented as a set of extra convolutional calculations connected with HDCNN. These two parts are jointly trained as a unified deep network in our approach. Thorough evaluations are performed on two challenging video datasets, i.e., CamVid and GATECH. Our approach achieves state-of-the-art performance on both of the two datasets.
关键词Semantic Video Segmentation Deconvolutional Neural Network Coarse-to-fine Training Spatio-temporal Consistence
WOS标题词Science & Technology ; Technology
DOI10.1016/j.patcog.2016.09.046
关键词[WOS]DATABASE
收录类别SCI
语种英语
项目资助者863 Program(2014AA015104) ; National Natural Science Foundation of China(61332016 ; 61272329 ; 61472422)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000392682400036
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/13435
专题模式识别国家重点实验室_图像与视频分析
通讯作者Jing Liu
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Univ Technol, Sydney, NSW, Australia
推荐引用方式
GB/T 7714
Wang, Yuhang,Liu, Jing,Li, Yong,et al. Hierarchically Supervised Deconvolutional Network for Semantic Video Segmentation[J]. PATTERN RECOGNITION,2017,64(1):437-445.
APA Wang, Yuhang.,Liu, Jing.,Li, Yong.,Fu, Jun.,Xu, Min.,...&Jing Liu.(2017).Hierarchically Supervised Deconvolutional Network for Semantic Video Segmentation.PATTERN RECOGNITION,64(1),437-445.
MLA Wang, Yuhang,et al."Hierarchically Supervised Deconvolutional Network for Semantic Video Segmentation".PATTERN RECOGNITION 64.1(2017):437-445.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Hierarchically Super(1470KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yuhang]的文章
[Liu, Jing]的文章
[Li, Yong]的文章
百度学术
百度学术中相似的文章
[Wang, Yuhang]的文章
[Liu, Jing]的文章
[Li, Yong]的文章
必应学术
必应学术中相似的文章
[Wang, Yuhang]的文章
[Liu, Jing]的文章
[Li, Yong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Hierarchically Supervised Deconvolutional Network for Semantic Video Segmentation.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。