CASIA OpenIR  > 类脑智能研究中心
Brain Knowledge Graph Analysis Based on Complex Network Theory
Zhu, Hongyin1; Zeng, Yi1,2; Wang, Dongsheng1; Xu, Bo1,2
2016-10
会议名称2016 International Conference on Brain Informatics and Health
会议日期October 13-16, 2016
会议地点Omaha, Nebraska, USA
摘要Domain knowledge about the brain is embedded in the literature over the whole scientific history. Researchers find there are intricate relationships among different cognitive functions, brain regions, brain diseases, neurons, protein, gene, neurotransmitters, etc. In order to integrate, synthesize, and analyze what we have known about the brain, the brain knowledge graph is constructed and released as part of the Linked Brain Data (LBD) project, to reveal the existing and potential relationships of brain related entities. However, there are some incorrect and missing relationships in the extracted relations, and researchers also cannot find the key topics overwhelmed in the massive relations. Some researchers analyze the properties of vertices based on the network topology, but they cannot verify and infer the potential relations. In order to address the above problems, we propose a framework which consists of 3 parts. Firstly, based on complex network theory, we adopt the embeddedness to verify the relations and infer the potential links. Secondly, we use the network topology of existing knowledge to build the self-relations graph. Finally, the structural holes theory from sociology is adopted to discover the key and core vertices in the whole brain knowledge graph and we recommend those topics to users. Compared with logic inference methods, our methods are lightweight and capable of processing large-scale knowledge efficiently. We test the results about relation verification and inference, and the result demonstrates the feasibility of our method.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/14354
专题类脑智能研究中心
通讯作者Zeng, Yi
作者单位1.Institute of Automation, Chinese Academy of Sciences, Beijing, China
2.Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
推荐引用方式
GB/T 7714
Zhu, Hongyin,Zeng, Yi,Wang, Dongsheng,et al. Brain Knowledge Graph Analysis Based on Complex Network Theory[C],2016.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Brain Knowledge Grap(304KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Hongyin]的文章
[Zeng, Yi]的文章
[Wang, Dongsheng]的文章
百度学术
百度学术中相似的文章
[Zhu, Hongyin]的文章
[Zeng, Yi]的文章
[Wang, Dongsheng]的文章
必应学术
必应学术中相似的文章
[Zhu, Hongyin]的文章
[Zeng, Yi]的文章
[Wang, Dongsheng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Brain Knowledge Graph Analysis Based on Complex Network Theory.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。