Greedy Batch-Based Minimum-Cost Flows for Tracking Multiple Objects
Wang, Xinchao1; Fan, Bin2; Chang, Shiyu3; Wang, Zhangyang4; Liu, Xianming1,5; Tao, Dacheng6,7; Huang, Thomas S.1; Bin Fan
2017-10-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
卷号26期号:10页码:4765-4776
文章类型Article
摘要Minimum-cost flow algorithms have recently achieved state-of-the-art results in multi-object tracking. However, they rely on the whole image sequence as input. When deployed in real-time applications or in distributed settings, these algorithms first operate on short batches of frames and then stitch the results into full trajectories. This decoupled strategy is prone to errors because the batch-based tracking errors may propagate to the final trajectories and cannot be corrected by other batches. In this paper, we propose a greedy batch-based minimum-cost flow approach for tracking multiple objects. Unlike existing approaches that conduct batch-based tracking and stitching sequentially, we optimize consecutive batches jointly so that the tracking results on one batch may benefit the results on the other. Specifically, we apply a generalized minimum-cost flows (MCF) algorithm on each batch and generate a set of conflicting trajectories. These trajectories comprise the ones with high probabilities, but also those with low probabilities potentially missed by detectors and trackers. We then apply the generalized MCF again to obtain the optimal matching between trajectories from consecutive batches. Our proposed approach is simple, effective, and does not require training. We demonstrate the power of our approach on data sets of different scenarios.
关键词Multi-object Tracking Minimum-cost Flows Batch Processing Graph Transformation
WOS标题词Science & Technology ; Technology
DOI10.1109/TIP.2017.2723239
关键词[WOS]MULTITARGET TRACKING ; PROPAGATION ; MODELS
收录类别SCI
语种英语
项目资助者Swiss National Science Foundation ; Natural Science Foundation of China(61573352 ; Australian Research Council(FT-130101457 ; 61403375 ; DP-140102164 ; 61472119) ; LP-150100671)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000406329500014
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/19694
专题模式识别国家重点实验室_先进数据分析与学习
通讯作者Bin Fan
作者单位1.Univ Illinois, Beckman Inst, Image Format & Proc Grp, Urbana, IL 61801 USA
2.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
3.IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
4.Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
5.Facebook Inc, San Francisco, CA 94025 USA
6.UBTech Sydney Artificial Intelligence Inst, Sydney, NSW 2008, Australia
7.Univ Sydney, Fac Engn & Informat Technol, Sch Informat Technol, Sydney, NSW 2008, Australia
推荐引用方式
GB/T 7714
Wang, Xinchao,Fan, Bin,Chang, Shiyu,et al. Greedy Batch-Based Minimum-Cost Flows for Tracking Multiple Objects[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2017,26(10):4765-4776.
APA Wang, Xinchao.,Fan, Bin.,Chang, Shiyu.,Wang, Zhangyang.,Liu, Xianming.,...&Bin Fan.(2017).Greedy Batch-Based Minimum-Cost Flows for Tracking Multiple Objects.IEEE TRANSACTIONS ON IMAGE PROCESSING,26(10),4765-4776.
MLA Wang, Xinchao,et al."Greedy Batch-Based Minimum-Cost Flows for Tracking Multiple Objects".IEEE TRANSACTIONS ON IMAGE PROCESSING 26.10(2017):4765-4776.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Xinchao]的文章
[Fan, Bin]的文章
[Chang, Shiyu]的文章
百度学术
百度学术中相似的文章
[Wang, Xinchao]的文章
[Fan, Bin]的文章
[Chang, Shiyu]的文章
必应学术
必应学术中相似的文章
[Wang, Xinchao]的文章
[Fan, Bin]的文章
[Chang, Shiyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。