CASIA OpenIR  > 模式识别国家重点实验室  > 机器人视觉
Traffic Sign Recognition Using a Multi-Task Convolutional Neural Network
Luo, Hengliang1,2; Yang, Yi1; Tong, Bei1; Wu, Fuchao1; Fan, Bin1
2018-04-01
发表期刊IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
卷号19期号:4页码:1100-1111
文章类型Article
摘要Although traffic sign recognition has been studied for many years, most existing works are focused on the symbol-based traffic signs. This paper proposes a new data-driven system to recognize all categories of traffic signs, which include both symbol-based and text-based signs, in video sequences captured by a camera mounted on a car. The system consists of three stages, traffic sign regions of interest (ROIs) extraction, ROIs refinement and classification, and post-processing. Traffic sign ROIs from each frame are first extracted using maximally stable extremal regions on gray and normalized RGB channels. Then, they are refined and assigned to their detailed classes via the proposed multi-task convolutional neural network, which is trained with a large amount of data, including synthetic traffic signs and images labeled from street views. The post-processing finally combines the results in all frames to make a recognition decision. Experimental results have demonstrated the effectiveness of the proposed system.
关键词Traffic Sign Detection Traffic Sign Classification Convolutional Neural Network Multi-task Learning
WOS标题词Science & Technology ; Technology
DOI10.1109/TITS.2017.2714691
关键词[WOS]CLASSIFICATION
收录类别SCI
语种英语
项目资助者National High Technology Research and Development Program of China(2015AA124102) ; National Natural Science Foundation of China(61375043) ; Beijing Natural Science Foundation(4142057)
WOS研究方向Engineering ; Transportation
WOS类目Engineering, Civil ; Engineering, Electrical & Electronic ; Transportation Science & Technology
WOS记录号WOS:000429017300009
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/19824
专题模式识别国家重点实验室_机器人视觉
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Luo, Hengliang,Yang, Yi,Tong, Bei,et al. Traffic Sign Recognition Using a Multi-Task Convolutional Neural Network[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2018,19(4):1100-1111.
APA Luo, Hengliang,Yang, Yi,Tong, Bei,Wu, Fuchao,&Fan, Bin.(2018).Traffic Sign Recognition Using a Multi-Task Convolutional Neural Network.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,19(4),1100-1111.
MLA Luo, Hengliang,et al."Traffic Sign Recognition Using a Multi-Task Convolutional Neural Network".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 19.4(2018):1100-1111.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
TITS-2017-HengliangL(4943KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Luo, Hengliang]的文章
[Yang, Yi]的文章
[Tong, Bei]的文章
百度学术
百度学术中相似的文章
[Luo, Hengliang]的文章
[Yang, Yi]的文章
[Tong, Bei]的文章
必应学术
必应学术中相似的文章
[Luo, Hengliang]的文章
[Yang, Yi]的文章
[Tong, Bei]的文章
相关权益政策
暂无数据
收藏/分享
文件名: TITS-2017-HengliangLuo.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。