CASIA OpenIR  > 毕业生  > 博士学位论文
双臂巡线机器人的控制方法研究与控制系统设计
Alternative TitleResearch on the Control Approaches to a Brachiation Inspection Robot and Design of its Control System
李恩
Subtype工学博士
Thesis Advisor谭民 ; 梁自泽
2007-06-02
Degree Grantor中国科学院研究生院
Place of Conferral中国科学院自动化研究所
Degree Discipline控制理论与控制工程
Keyword巡线机器人 欠驱动系统 非线性控制 运动学 动力学 Inspection Robot Underactuated System Nonlinear Control Kinematics Dynamics
Abstract为了解决双臂巡线机器人自动控制中的一些非线性问题,本文在只考虑重力因素对机器人影响的前提下,对巡线机器人中几个主要控制问题进行了研究,并对巡线机器人的控制系统设计进行了探讨。 第一,对巡线机器人的研究意义和发展现状进行了综述,分析了设计中的关键技术和主要难点。对欠驱动机械系统及其控制问题进行了介绍,回顾了欠驱动系统的主要研究方法,并分析了巡线机器人的欠驱动问题。 第二,根据高压输电线路典型障碍物的特点,提出了双臂自平衡巡线机器人的机构设计思路和越障机理。针对运动控制中的重力平衡约束,分别建立了其运动学模型和动力学模型,提出了运动控制中所需要解决的若干非线性控制问题。 第三,针对双臂巡线机器人的机构特点,建立了其正向运动学方程。根据力学平衡原理得到了机器人运动学中的静态力学约束条件。通过正向运动学和约束条件的综合,分析了机器人末端手臂的可达空间,将CCD和BFGS相结合解决其约束条件下的逆运动学求解问题。 第四,建立了巡线机器人简化模型——球杆系统的动力学方程,将部分反馈线性化和Yamada全局线性化相结合,推导了适合于欠驱动系统控制的全局线性化控制器,并将其应用于球杆系统中。这种全局线性化方法对于平衡流形附近的运动控制较为有效,能很好地解决机器人的定点控制问题。 第五,针对双臂巡线机器人的稳定控制问题,提出一种基于能量的稳定控制方法,分别给出了期望点为零点和非零点的反馈控制律,通过Lyapunov分析给出了使系统稳定于期望点的参数选择规则,实现了全局稳定控制。针对平移关节运动范围受限条件下的稳定控制问题,分析了关节范围受限情况下的平衡控制策略,分别给出基于不同系统结构的切换控制策略和基于Lyapunov方法的控制算法,实现运动关节受限条件下的稳定控制。 第六,针对期望位置是系统的非平衡点的控制问题,提出基于周期性运动的控制方法。通过观察Poincare截面图中截点的运动情况,提出由增幅、粗调、细调、恒摆四个阶段构成的摆起控制策略,使系统到达期望非平衡点。 第七,针对巡线机器人的机构特点和运行环境,利用分层递阶结构方式构建其控制系统,设计了基于PC104+ARM9的多处理器机器人控制器,并基于CAN现场总线设计了各控制单元之间的通信网络。针对巡线机器人越障中的复杂动作过程和运行环境,提出基于规则库的自主行为规划控制策略和基于图像传输的远程控制方法,提高机器人越障的可靠性。 最后,对本文所取得的研究成果进行了总结,并指出了今后需继续开展的工作。
Other AbstractIn order to solve some important control problems of brachiation inspection robot, by ignoring other affecting factors and only considering the influence of gravity, several nonlinear control problems are studied and the control system is designed for the brachiation inspection robot Firstly, the previous research work of inspection robot is overviewed and the key technical difficult points during its designing are analyzed. Furthermore, the underactuated problems in the inspection robot are illustrated. Secondly, according to the characteristics of the obstacles, the mechanical design skeleton and operating principle are presented. Based on the kinematics model and simplified dynamics model, several nonlinear control problems to be solved are presented during the motion control. Thirdly, the kinematical equation of the BIR model is derived with the screw method. Based on static gravity balance theory, the relationship between the passive joints and active joints is obtained. With this restriction, the workspace of the BIR is analyzed and the inverse kinematics problem is solved by the combination of CCD and BFGS optimization methods. Fourthly, with Lagrange dynamical techniques, the mathematical equations are presented for the simplified BIR model, i.e. the B-B system. The partial feedback linearization and Yamada's global linearization method are combined to obtain a global approximate linearization method which is suitable for underactuated systems and is efficient for the set-point control near the equilibrium manifold. Fifthly, an energy-based method is proposed for the balance control problems of the B-B system. Based on Lyapunov analysis, the feedback control laws together with the rule of parameters choice are obtained for both zero and nonzero desired point cases. Considering the limitation of the motion range, a switch control strategy between two structure modes and a Lyapnov-based control method are proposed and analyzed respectively. Sixthly, considering the case of nonequilibrium desired point, an open-loop control method based on vibrational input is proposed. Based on the study of Poincare section of the B-B system with vibrational input, the swing up control problem is solved by the control strategy composed of four phases with amplitude increasing, rough adjustment, accurate adjustment and single pendulum. The B-B system can always be controlled to arrive at the desired point. Seventhly, based on a hierarchical control structure, the control system is constructed with PC104 and ARM9 embedded techniques. An application layer protocol based on CAN2.0 bus is proposed for the communication between multiple microprocessers. Considering the complicated environment, a rule-base based behavior planning method and a video-transferring based remote control method are presented for obstacle-negotiation of brachiation inspection robot. Finally, the obtained results are summarized and the future work is addressed.
shelfnumXWLW1080
Other Identifier200418014628043
Language中文
Document Type学位论文
Identifierhttp://ir.ia.ac.cn/handle/173211/5997
Collection毕业生_博士学位论文
Recommended Citation
GB/T 7714
李恩. 双臂巡线机器人的控制方法研究与控制系统设计[D]. 中国科学院自动化研究所. 中国科学院研究生院,2007.
Files in This Item:
File Name/Size DocType Version Access License
CASIA_20041801462804(9427KB) 暂不开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[李恩]'s Articles
Baidu academic
Similar articles in Baidu academic
[李恩]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李恩]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.