Moving average reversion strategy for on-line portfolio selection
Li, Bin1; Hoi, Steven C. H.2; Sahoo, Doyen2; Liu, Zhi-Yong3
2015-05-01
发表期刊ARTIFICIAL INTELLIGENCE
卷号222页码:104-123
文章类型Article
摘要On-line portfolio selection, a fundamental problem in computational finance, has attracted increasing interest from artificial intelligence and machine learning communities in recent years. Empirical evidence shows that stock's high and low prices are temporary and stock prices are likely to follow the mean reversion phenomenon. While existing mean reversion strategies are shown to achieve good empirical performance on many real datasets, they often make the single-period mean reversion assumption, which is not always satisfied, leading to poor performance in certain real datasets. To overcome this limitation, this article proposes a multiple-period mean reversion, or so-called "Moving Average Reversion" (MAR), and a new on-line portfolio selection strategy named "On-Line Moving Average Reversion" (OLMAR), which exploits MAR via efficient and scalable online machine learning techniques. From our empirical results on real markets, we found that OLMAR can overcome the drawbacks of existing mean reversion algorithms and achieve significantly better results, especially on the datasets where existing mean reversion algorithms failed. In addition to its superior empirical performance, OLMAR also runs extremely fast, further supporting its practical applicability to a wide range of applications. Finally, we have made all the datasets and source codes of this work publicly available at our, project website: http://OLPS.stevenhoi.org/. (C) 2015 Elsevier B.V. All rights reserved.
关键词Portfolio Selection On-line Learning Mean Reversion Moving Average Reversion
WOS标题词Science & Technology ; Technology
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000351791900004
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8123
专题复杂系统管理与控制国家重点实验室_机器人理论与应用
作者单位1.Wuhan Univ, Econ & Management Sch, Wuhan 430072, Peoples R China
2.Singapore Management Univ, Sch Informat Syst, Singapore 178902, Singapore
3.Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Li, Bin,Hoi, Steven C. H.,Sahoo, Doyen,et al. Moving average reversion strategy for on-line portfolio selection[J]. ARTIFICIAL INTELLIGENCE,2015,222:104-123.
APA Li, Bin,Hoi, Steven C. H.,Sahoo, Doyen,&Liu, Zhi-Yong.(2015).Moving average reversion strategy for on-line portfolio selection.ARTIFICIAL INTELLIGENCE,222,104-123.
MLA Li, Bin,et al."Moving average reversion strategy for on-line portfolio selection".ARTIFICIAL INTELLIGENCE 222(2015):104-123.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Bin]的文章
[Hoi, Steven C. H.]的文章
[Sahoo, Doyen]的文章
百度学术
百度学术中相似的文章
[Li, Bin]的文章
[Hoi, Steven C. H.]的文章
[Sahoo, Doyen]的文章
必应学术
必应学术中相似的文章
[Li, Bin]的文章
[Hoi, Steven C. H.]的文章
[Sahoo, Doyen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。