CASIA OpenIR  > 脑网络组研究中心
MRI features predict p53 status in lower-grade gliomas via a machine-learning approach
Li, Yiming1; Qian, Zenghui1; Xu, Kaibin2; Wang, Kai3; Fan, Xing1; Li, Shaowu4; Jiang, Tao1,5,6,7; Liu, Xing1; Wang, Yinyan5
2018
发表期刊NEUROIMAGE-CLINICAL
卷号17页码:306-311
文章类型Article
摘要Background: P53 mutation status is a pivotal biomarker for gliomas. Here, we developed a machine-learning model to predict p53 status in lower-grade gliomas based on radiomic features extracted from conventional magnetic resonance (MR) images.
关键词P53 Lower-grade Gliomas Radiogenomics Prediction Machine Learning
WOS标题词Science & Technology ; Life Sciences & Biomedicine
DOI10.1016/j.nicl.2017.10.030
关键词[WOS]ENDOTHELIAL GROWTH-FACTOR ; SQUAMOUS-CELL CARCINOMA ; TEXTURE FEATURES ; SURVIVAL ; CANCER ; EXPRESSION ; MUTATIONS ; PROGNOSIS ; SELECTION ; TUMORS
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(81601452) ; Beijing Natural Science Foundation(7174295) ; National Key Research and Development Plan(2016YFC0902500) ; Capital Medical Development Research Fund(2016-1-1072) ; Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support(ZYLX201708)
WOS研究方向Neurosciences & Neurology
WOS类目Neuroimaging
WOS记录号WOS:000426180300033
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/21965
专题脑网络组研究中心
作者单位1.Capital Med Univ, Beijing Neurosurg Inst, 6 Tiantanxili, Beijing 100050, Peoples R China
2.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
3.Capital Med Univ, Beijing Tiantan Hosp, Dept Neuroradiol, Beijing, Peoples R China
4.Capital Med Univ, Beijing Neurosurg Inst, Neurol Imaging Ctr, Beijing, Peoples R China
5.Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China
6.Beijing Inst Brain Disorders, Ctr Brain Tumor, Beijing, Peoples R China
7.China Natl Clin Res Ctr Neurol Dis, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Li, Yiming,Qian, Zenghui,Xu, Kaibin,et al. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach[J]. NEUROIMAGE-CLINICAL,2018,17:306-311.
APA Li, Yiming.,Qian, Zenghui.,Xu, Kaibin.,Wang, Kai.,Fan, Xing.,...&Wang, Yinyan.(2018).MRI features predict p53 status in lower-grade gliomas via a machine-learning approach.NEUROIMAGE-CLINICAL,17,306-311.
MLA Li, Yiming,et al."MRI features predict p53 status in lower-grade gliomas via a machine-learning approach".NEUROIMAGE-CLINICAL 17(2018):306-311.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Yiming]的文章
[Qian, Zenghui]的文章
[Xu, Kaibin]的文章
百度学术
百度学术中相似的文章
[Li, Yiming]的文章
[Qian, Zenghui]的文章
[Xu, Kaibin]的文章
必应学术
必应学术中相似的文章
[Li, Yiming]的文章
[Qian, Zenghui]的文章
[Xu, Kaibin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。