CASIA OpenIR  > 毕业生  > 博士学位论文
复杂场景多目标跟踪中的遮挡算法与应用研究
其他题名Study of Occlusion Handling Algorithms and Applications in Multi-target Tracking under Complex Environment
丁欢
学位类型工学博士
导师张文生
2012-05-30
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词复杂场景 多目标跟踪 遮挡分割 粒子滤波 嵌入式 Complex Scenes Multi-target Tracking Occlusion Segmentation Particle Filter Embedded System
摘要复杂场景中的多目标跟踪是计算机视觉领域的关键技术之一,在民用和国防诸多领域中均具有极为广阔的应用前景。在单目固定摄像机实现复杂场景的多目标视频监控时,由于观察角度等原因,目标之间的相互遮挡是普遍现象,给目标跟踪算法准确跟踪目标带来了非常大的挑战,甚至严重制约了视频监控系统的进一步发展。如何有效地解决复杂场景中经常出现的目标遮挡,尤其是多个非刚性目标交互导致的短时遮挡,成为当前多目标跟踪技术中亟待解决的难题。本文重点研究复杂场景下多目标跟踪的遮挡算法与应用。 本文将目标遮挡处理形式化地表示为运动目标前景像素的分类问题,具体研究内容如下:首先,改进传统的基于像素灰度的背景建模方法,提出了一种基于光流速度场的背景建模方法,得到场景中包含光流速度信息的运动前景像素;其次,提出了两种具体的多目标遮挡分割算法――分阶段K近邻遮挡分割算法与骨架点指派遮挡分割算法,将二值的运动前景像素分配给恰当的目标;最后,提出了一种利用时间序列信息补偿短时遮挡目标的遮挡补偿算法,采用多目标粒子滤波器跟踪框架对场景中目标进行跟踪。实验表明,通过遮挡分割与补偿,可获得更准确的目标信息,有效减少多目标跟踪过程中的误 跟、漏跟、漂移等现象,提升跟踪鲁棒性。此外,开发了基于TI公司DSP处理器DM642的嵌入式视频监控系统,经算法移植与优化,实现了嵌入式环境下的遮挡处理与多目标跟踪,在智能安防领域得到广泛应用,产生了实际的应用价值。 本文主要工作与贡献如下: 1.在复杂场景多目标跟踪遮挡理论方面,给出了基于运动前景像素分类的遮挡处理问题形式化表达。借助贝叶斯理论,综合利用外观、颜色、运动、位置等信息,构造二值的运动前景像素对各跟踪目标的似然度函数,从而可依据最大后验概率准则,完成运动前景像素的分类。 2.在复杂场景多目标跟踪遮挡算法设计方面,提出了两种具体的遮挡分割与补偿算法: (1) 针对多目标交互时的短时遮挡,提出了一种分阶段K近邻遮挡分割算法:使用基于光流速度场的背景建模方法,获得运动前景像素及其光流速度;构造目标的局部光流速度概率直方图,并依据此运动统计信息在粗分类阶段将运动前景像素分配给相应目标;定义基于外观与颜色的像素距离,借助K近邻分类对粗分类阶段无法判定的像素进行遮挡分割。实验结果表明,该算法能够有效利用运动统计信息,降低遮挡干扰,减少多目标跟踪的误跟及漂移。 (2) 针对非刚性目标间交互产生的遮挡,提出了一种基于骨架点指派的遮挡分割与补偿算法:综合光流特征点与SURF(Speeded Up Robust Features)特征点的优点,从图像中提取出目标骨架点集合;构造、定义了骨架点在连续图像序列中的匹配函数与状态转移矩阵,并以此为依据将其指派给相应目标;以完成指派的骨架点为核,对所有运动前景像素密集分类,完成了全部运动前景遮挡分割;利用历史信息对被遮挡目标丢失部分进行补偿,得到各目标更为准确的外观与运动前景像素。实验表明,骨架点能够反映目标结构特性,为遮挡 处理提供了新的解决方法。 3. 在复杂场景多目标跟踪遮挡应用方面: (1) 集成多种智...
其他摘要The multi-target tracking in complex scenes is one of the key issues of the computer vision field. There is very board applications in both civil and military field. However, in the video surveillance systems by monocular stationary cameras, occlusions are common phenomenon because of the viewing angle and other reasons. It significantly impacts the accuracy of target tracking algorithms, even seriously affects the application of video surveillance systems. Therefore, how to effectively solve the occlusions in complex scenes, especially short-term occlusions caused by interactive non-rigid targets, becomes one of the most urgent problems in multi-target tracking. This thesis focuses on the occlusion handling algorithms and applications in multi-target tracking in complex scenes. This thesis takes the occlusion handling as the classification of foreground pixels: Firstly, the traditional pixel-based background model is improved, and an optical flow based background modeling approach is proposedto extract both foreground and their motion information; Secondly, two specific occlusion handling algorithms are proposed ——stepwise KNN occlusion segmentation and skeleton points assignment based occlusion segmentation; Finally, shortly occluded targets are compensated by the historical data, and object tracking is handled by a particle filter-based tracking framework. Experiments show that more accurate target information can be obtained by occlusion segmentation and compensation, which effectively reduces the mistakes in the process of multi-target tracking and enhances the tracking robustness. In addition, an embedded video surveillance system based on IT’s DSP DM642 has been developed. After porting and optimization, the occlusion handling and multi-target tracking have been implemented in embedded environment and been widely used in intelligent security field, generating practical application values. The mainly work and contribution of this thesis are as follows: 1. In the aspect of occlusion theory of multi-target tracking in complex scenes. A formal expression of occlusion handling based on foreground classification has been proposed. With Bayesian theory and the comprehensive utilization of appearance, color, movement, location and other information, the likelihood between foreground pixel and each target are constructed. Thus, occlusion segmentation could be completed base on the MAP criteria. 2. In the aspect of occlusion handling algorithm des...
馆藏号XWLW1733
其他标识符200918014628019
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6454
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
丁欢. 复杂场景多目标跟踪中的遮挡算法与应用研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2012.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20091801462801(18595KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[丁欢]的文章
百度学术
百度学术中相似的文章
[丁欢]的文章
必应学术
必应学术中相似的文章
[丁欢]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。