CASIA OpenIR  > 智能感知与计算研究中心
High-Order Topology Modeling of Visual Words for Image Classification
Huang, Kaiqi1; Wang, Chong1; Tao, Dacheng2
2015-11-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
卷号24期号:11页码:3598 - 3608
文章类型Article
摘要Modeling relationship between visual words in feature encoding is important in image classification. Recent methods consider this relationship in either image or feature space, and most of them incorporate only pairwise relationship (between visual words). However, in situations involving large variability in images, one cannot capture intrinsic invariance of intra-class images using low-order pairwise relationship. The result is not robust to larger variations in images. In addition, as the number of potential pairings grows exponentially with the number of visual words, the task of learning becomes computationally expensive. To overcome these two limitations, we propose an efficient classification framework that exploits high-order topology of visual words in the feature space, as follows. First, we propose a search algorithm that seeks dependence between the visual words. This dependence is used to construct higher order topology in the feature space. Then, the local features are encoded according to this higher order topology to improve the image classification. Experiments involving four common data sets, namely PASCAL VOC 2007, 15 Scenes, Caltech 101, and UIUC Sport Event, demonstrate that the dependence search significantly improves the efficiency of higher order topological construction, and consequently increases the image classification in all these data sets.
关键词Image Classification Feature Encoding Visual Words Higher-order
WOS标题词Science & Technology ; Technology
关键词[WOS]SELECTION
URL查看原文
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000358247700006
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8884
专题智能感知与计算研究中心
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China
2.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Sydney, NSW 2007, Australia
推荐引用方式
GB/T 7714
Huang, Kaiqi,Wang, Chong,Tao, Dacheng. High-Order Topology Modeling of Visual Words for Image Classification[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2015,24(11):3598 - 3608.
APA Huang, Kaiqi,Wang, Chong,&Tao, Dacheng.(2015).High-Order Topology Modeling of Visual Words for Image Classification.IEEE TRANSACTIONS ON IMAGE PROCESSING,24(11),3598 - 3608.
MLA Huang, Kaiqi,et al."High-Order Topology Modeling of Visual Words for Image Classification".IEEE TRANSACTIONS ON IMAGE PROCESSING 24.11(2015):3598 - 3608.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Kaiqi Huang_High-Ord(1884KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Kaiqi]的文章
[Wang, Chong]的文章
[Tao, Dacheng]的文章
百度学术
百度学术中相似的文章
[Huang, Kaiqi]的文章
[Wang, Chong]的文章
[Tao, Dacheng]的文章
必应学术
必应学术中相似的文章
[Huang, Kaiqi]的文章
[Wang, Chong]的文章
[Tao, Dacheng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Kaiqi Huang_High-Order Topology Modeling of Visual Words for Image Classification.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。