Solving convex optimization problems using recurrent neural networks in finite time
Long Cheng; Zeng-Guang Hou; Noriyasu Homma; Min Tan; Madan M. Gupta
2009
会议名称International Joint Conference on Neural Networks
会议日期JUN 14-19, 2009
会议地点Atlanta
会议举办国USA
摘要A recurrent neural network is proposed to deal with the convex optimization problem. By employing a specific nonlinear unit, the proposed neural network is proved to be convergent to the optimal solution in finite time, which increases the computation efficiency dramatically. Compared with most of existing stability conditions, i.e., asymptotical stability and exponential stability, the obtained finite-time stability result is more attractive, and therefore could be considered as a useful supplement to the current literature. In addition, a switching structure is suggested to further speed up the neural network convergence. Moreover, by using the penalty function method, the proposed neural network can be extended straightforwardly to solving the constrained optimization problem. Finally, the satisfactory performance of the proposed approach is illustrated by two simulation examples.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/23154
专题复杂系统管理与控制国家重点实验室_先进机器人
推荐引用方式
GB/T 7714
Long Cheng,Zeng-Guang Hou,Noriyasu Homma,et al. Solving convex optimization problems using recurrent neural networks in finite time[C],2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Long Cheng]的文章
[Zeng-Guang Hou]的文章
[Noriyasu Homma]的文章
百度学术
百度学术中相似的文章
[Long Cheng]的文章
[Zeng-Guang Hou]的文章
[Noriyasu Homma]的文章
必应学术
必应学术中相似的文章
[Long Cheng]的文章
[Zeng-Guang Hou]的文章
[Noriyasu Homma]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。