Real-time Depth-based Tracking Using A Binocular Camera
Zhang, Leijie; Cao, Zhiqiang; Meng, Xiangrui; Zhou, Chao; Wang, Shuo
2016-06
会议名称World Congress on Intelligent Control and Automation(WCICA)
会议日期June 12-15, 2016
会议地点Guilin, China
摘要Depth map provides rich information and it can be utilized in object tracking to handle some challenging problems in conventional RGB tracking such as occlusions and model drift. In this paper, we present a tracker that provides an effective real-time target tracking method based on a binocular camera. The proposed tracker is an extension of the popular KCF algorithm that leverages a circulant structure of tracking-by-detection with kernels for tracking. On this basis, we design a simple yet effective method to detect occlusions and recover tracking using noisy depth map obtained from a binocular camera. Firstly, one needs to identify exact and reasonable peak number of the target region’s depth histogram and apply GMM model to evaluate the depth distribution. The occlusion is then detected based on the depth evaluation and the maximum response from KCF. When the occlusion happens, it is segmented to build the corresponding search region for recovery. The experimental results demonstrate the effectiveness of the proposed method and the superiority to the KCF tracker.
DOI10.1109/WCICA.2016.7578274
引用统计
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/14798
专题复杂系统管理与控制国家重点实验室_先进机器人
通讯作者Cao, Zhiqiang
作者单位State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Zhang, Leijie,Cao, Zhiqiang,Meng, Xiangrui,et al. Real-time Depth-based Tracking Using A Binocular Camera[C],2016.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
PID4185643.pdf(2498KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Leijie]的文章
[Cao, Zhiqiang]的文章
[Meng, Xiangrui]的文章
百度学术
百度学术中相似的文章
[Zhang, Leijie]的文章
[Cao, Zhiqiang]的文章
[Meng, Xiangrui]的文章
必应学术
必应学术中相似的文章
[Zhang, Leijie]的文章
[Cao, Zhiqiang]的文章
[Meng, Xiangrui]的文章
相关权益政策
暂无数据
收藏/分享
文件名: PID4185643.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。