CASIA OpenIR

浏览/检索结果: 共9条,第1-9条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Learning to Adapt Across Dual Discrepancy for Cross-Domain Person Re-Identification 期刊论文
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 卷号: 45, 期号: 2, 页码: 1963-1980
作者:  Luo, Chuanchen;  Song, Chunfeng;  Zhang, Zhaoxiang
Adobe PDF(2539Kb)  |  收藏  |  浏览/下载:241/70  |  提交时间:2023/03/20
Person re-identification  domain adaptation  cross-domain mixup  camera-aware learning  self-paced learning  
VAG: A Uniform Model for Cross-Modal Visual-Audio Mutual Generation 期刊论文
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 页码: 13
作者:  Hao, Wangli;  Guan, He;  Zhang, Zhaoxiang
收藏  |  浏览/下载:228/0  |  提交时间:2022/06/10
Task analysis  Instruments  Visualization  Image reconstruction  Generators  Decoding  Generative adversarial networks  Cross modality  cross-modal generation  mutual generation  visual and audio  
From Individual to Whole: Reducing Intra-class Variance by Feature Aggregation 期刊论文
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 卷号: 130, 期号: 3, 页码: 800-819
作者:  Zhang, Zhaoxiang;  Luo, Chuanchen;  Wu, Haiping;  Chen, Yuntao;  Wang, Naiyan;  Song, Chunfeng
Adobe PDF(1762Kb)  |  收藏  |  浏览/下载:296/41  |  提交时间:2022/06/06
Feature aggregation  Deep learning  Intra-class variance  Person re-identification  Video object detection  
MS-Net: Multi-Source Spatio-Temporal Network for Traffic Flow Prediction 期刊论文
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 卷号: 23, 期号: 7, 页码: 14
作者:  Fang, Shen;  Prinet, Veronique;  Chang, Jianlong;  Werman, Michael;  Zhang, Chunxia;  Xiang, Shiming;  Pan, Chunhong
收藏  |  浏览/下载:238/0  |  提交时间:2022/01/27
Feature extraction  Convolution  Predictive models  Data models  Correlation  Roads  Kernel  Graph convolution  deep attention mechanism  traffic network  traffic flow prediction  artificial intelligence  deep learning  
DATA: Differentiable ArchiTecture Approximation With Distribution Guided Sampling 期刊论文
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 卷号: 43, 期号: 9, 页码: 2905-2920
作者:  Zhang, Xinbang;  Chang, Jianlong;  Guo, Yiwen;  Meng, Gaofeng;  Xiang, Shiming;  Lin, Zhouchen;  Pan, Chunhong
Adobe PDF(1346Kb)  |  收藏  |  浏览/下载:324/53  |  提交时间:2021/11/02
Computer architecture  Search problems  Optimization  Task analysis  Bridges  Binary codes  Estimation  Neural architecture search(NAS)  ensemble gumbel-softmax  distribution guided sampling  
3D PostureNet: A unified framework for skeleton-based posture recognition 期刊论文
PATTERN RECOGNITION LETTERS, 2020, 卷号: 140, 期号: 140, 页码: 143-149
作者:  Liu, Jianbo;  Wang, Ying;  Liu, Yongcheng;  Xiang, Shiming;  Pan, Chunhong
Adobe PDF(1997Kb)  |  收藏  |  浏览/下载:280/39  |  提交时间:2021/03/02
Human posture recognition  Static hand gesture recognition  Skeleton-based  3D convolutional neural network  
Multi-Domain Image-to-Image Translation via a Unified Circular Framework 期刊论文
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 期号: 30, 页码: 670-684
作者:  Wang, Yuxi;  Zhang, Zhaoxiang;  Hao, Wangli;  Song, Chunfeng
Adobe PDF(3399Kb)  |  收藏  |  浏览/下载:338/64  |  提交时间:2021/03/02
Task analysis  Semantics  Visualization  Generative adversarial networks  Generators  Feature extraction  Meteorology  Image-to-image transfer  sharing knowledge module  multiple domain pairs  GANs  
Attention Guided Multiple Source and Target Domain Adaptation 期刊论文
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 期号: 30, 页码: 892-906
作者:  Wang, Yuxi;  Zhang, Zhaoxiang;  Hao, Wangli;  Song, Chunfeng
Adobe PDF(3460Kb)  |  收藏  |  浏览/下载:305/50  |  提交时间:2021/03/02
Semantics  Task analysis  Generators  Generative adversarial networks  Feature extraction  Visualization  Meteorology  Domain adaptation  multiple source and target domains  attention  
Geometric Rectification of Document Images using Adversarial Gated Unwarping Network 期刊论文
Pattern Recognition, 2020, 卷号: 108, 期号: 108, 页码: 1-13
作者:  Xiyan Liu;  Gaofeng MENG;  Bin FAN;  Shiming Xiang;  Chunhong PAN
浏览  |  Adobe PDF(7916Kb)  |  收藏  |  浏览/下载:286/91  |  提交时间:2020/10/20
Distorted document image  Geometric rectification  Gated module  Deep learning