CASIA OpenIR

Browse/Search Results:  1-9 of 9 Help

Selected(0)Clear Items/Page:    Sort:
A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis 期刊论文
EUROPEAN RESPIRATORY JOURNAL, 2020, 卷号: 56, 期号: 2, 页码: 11
Authors:  Wang, Shuo;  Zha, Yunfei;  Li, Weimin;  Wu, Qingxia;  Li, Xiaohu;  Niu, Meng;  Wang, Meiyun;  Qiu, Xiaoming;  Li, Hongjun;  Yu, He;  Gong, Wei;  Bai, Yan;  Li, Li;  Zhu, Yongbei;  Wang, Liusu;  Tian, Jie
Favorite  |  View/Download:27/0  |  Submit date:2020/09/21
CT-Based Radiomic Signature as a Prognostic Factor in Stage IV ALK-Positive Non-small-cell Lung Cancer Treated With TKI Crizotinib: A Proof-of-Concept Study 期刊论文
FRONTIERS IN ONCOLOGY, 2020, 卷号: 10, 页码: 9
Authors:  Li, Hailin;  Zhang, Rui;  Wang, Siwen;  Fang, Mengjie;  Zhu, Yongbei;  Hu, Zhenhua;  Dong, Di;  Shi, Jingyun;  Tian, Jie
Favorite  |  View/Download:55/0  |  Submit date:2020/04/07
computed tomography  radiomics  non-small-cell lung cancer  tyrosine kinase inhibitor resistance  anaplastic lymphoma kinase  
Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker 期刊论文
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 卷号: 8, 期号: 2, 页码: 10
Authors:  He, Bingxi;  Dong, Di;  She, Yunlang;  Zhou, Caicun;  Fang, Mengjie;  Zhu, Yongbei;  Zhang, Henghui;  Huang, Zhipei;  Jiang, Tao;  Tian, Jie;  Chen, Chang
View  |  Adobe PDF(5232Kb)  |  Favorite  |  View/Download:25/4  |  Submit date:2020/08/24
immunotherapy  lung neoplasms  tumor microenvironment  biomarkers  tumor  biostatistics  
Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer 期刊论文
EUROPEAN RADIOLOGY, 2019, 卷号: 29, 期号: 7, 页码: 3820-3829
Authors:  Han, Lu;  Zhu, Yongbei;  Liu, Zhenyu;  Yu, Tao;  He, Cuiju;  Jiang, Wenyan;  Kan, Yangyang;  Dong, Di;  Tian, Jie;  Luo, Yahong
Favorite  |  View/Download:88/0  |  Submit date:2019/07/11
Breast cancer  Axillary lymph node metastasis  Radiomics  Preoperative prediction  MRI  
A deep learning radiomics model for preoperative grading in meningioma 期刊论文
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 卷号: 116, 页码: 128-134
Authors:  Zhu, Yongbei;  Man, Chuntao;  Gong, Lixin;  Dong, Di;  Yu, Xinyi;  Wang, Shuo;  Fang, Mengjie;  Wang, Siwen;  Fang, Xiangming;  Chen, Xuzhu;  Tian, Jie
Favorite  |  View/Download:85/0  |  Submit date:2019/07/11
Radiomics  Deep learning  Meningioma  Tumor grading  Magnetic resonance imaging  
Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning 期刊论文
EUROPEAN RESPIRATORY JOURNAL, 2019, 卷号: 53, 期号: 3, 页码: 11
Authors:  Wang, Shuo;  Shi, Jingyun;  Ye, Zhaoxiang;  Dong, Di;  Yu, Dongdong;  Zhou, Mu;  Liu, Ying;  Gevaert, Olivier;  Wang, Kun;  Zhu, Yongbei;  Zhou, Hongyu;  Liu, Zhenyu;  Tian, Jie
View  |  Adobe PDF(743Kb)  |  Favorite  |  View/Download:177/72  |  Submit date:2019/04/30
Radiomics Analysis on T2-MR Image to Predict Lymphovascular Space Invasion in Cervical Cancer 会议论文
, San Diego, USA, 2019-2
Authors:  Wang, Shuo;  Chen, Xi;  Liu, Zhenyu;  Wu, Qingxia;  Zhu, Yongbei;  Wang, Meiyun;  Tian, Jie
View  |  Adobe PDF(540Kb)  |  Favorite  |  View/Download:130/28  |  Submit date:2019/04/30
Unsupervised Deep Learning Features for Lung Cancer Overall Survival Analysis 会议论文
, Honolulu, Hawaii, USA, 2018-7
Authors:  Wang, Shuo;  Liu, Zhenyu;  Chen, Xi;  Zhu, Yongbei;  Zhou, Hongyu;  Tang, Zhenchao;  Wei, Wei;  Dong, Di;  Wang, Meiyun;  Tian, Jie
View  |  Adobe PDF(797Kb)  |  Favorite  |  View/Download:110/46  |  Submit date:2019/04/30
Lung Cancer  Survival Analysis  Deep Learning  Unsupervised Feature Learning  Convolutional Neural Networks  
Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer? 期刊论文
EUROPEAN RADIOLOGY, 2018, 卷号: 28, 期号: 5, 页码: 2058-2067
Authors:  Yang, Lei;  Dong, Di;  Fang, Mengjie;  Zhu, Yongbei;  Zang, Yali;  Liu, Zhenyu;  Zhang, Hongmei;  Ying, Jianming;  Zhao, Xinming;  Tian, Jie
Favorite  |  View/Download:88/0  |  Submit date:2018/10/10
Colorectal Neoplasms  Adenocarcinoma  Mutation  Diagnostic Imaging  Roc Curve